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Figure 1: Different supervision for 4D generation. MV-VDM shows superior spatiotemporal consis-
tency than previous models. Based on MV-VDM, we propose Animate3D to animate any 3D model.

Abstract

Recent advances in 4D generation mainly focus on generating 4D content by distill-
ing pre-trained text or single-view image-conditioned models. It is inconvenient for
them to take advantage of various off-the-shelf 3D assets with multi-view attributes,
and their results suffer from spatiotemporal inconsistency owing to the inherent
ambiguity in the supervision signals. In this work, we present Animate3D, a novel
framework for animating any static 3D model. The core idea is two-fold: 1) We
propose a novel multi-view video diffusion model (MV-VDM) conditioned on
multi-view renderings of the static 3D object, which is trained on our presented
large-scale multi-view video dataset (MV-Video). 2) Based on MV-VDM, we
introduce a framework combining reconstruction and 4D Score Distillation Sam-
pling (4D-SDS) to leverage the multi-view video diffusion priors for animating
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3D objects. Specifically, for MV-VDM, we design a new spatiotemporal attention
module to enhance spatial and temporal consistency by integrating 3D and video
diffusion models. Additionally, we leverage the static 3D model’s multi-view
renderings as conditions to preserve its identity. For animating 3D models, an
effective two-stage pipeline is proposed: we first reconstruct motions directly
from generated multi-view videos, followed by the introduced 4D-SDS to refine
both appearance and motion. Benefiting from accurate motion learning, we could
achieve straightforward mesh animation. Qualitative and quantitative experiments
demonstrate that Animate3D significantly outperforms previous approaches. Data,
code, and models are open-released.

1 Introduction

3D content creation has garnered significant attention due to its wide applicability in AR/VR, gaming,
and movie industry. With the development of diffusion models [45, 44, 39, 20, 51, 6, 19] and
large-scale 3D object datasets [13, 12, 37, 65, 70, 14], recent 3D foundational generations have seen
extensive exploration through fine-tuned text-to-image (T2I) diffusion models [31, 40, 41, 52, 32, 49],
as well as training large reconstruction models from scratch [22, 61, 47, 67, 54], leading the 3D assets
creation to a new era. Despite the significant progress in static 3D representation, this momentum has
not been paralleled in the realm of dynamic 3D content generation, also known as 4D generation.

4D generation is more challenging due to the difficulty of simultaneously maintaining spatiotemporal
consistency in visual appearance and dynamic motion. In this paper, we mainly focus on two
challenges: 1) No foundational 4D generation models to unify both spatial and temporal consistency.
Though recent 4D generation works [43, 24, 5, , 63,59,4, 57, 66, 16] separately distill
knowledge from pre-trained T2I and 3D diffusion models [29, 41, 31] and video diffusion models [51,

, 6] to model multi-view spatial appearance and temporal motions respectively, we clarify that such a
detached learning way suffers from inevitable accumulation of appearance degradation as the motion
changed, as shown in Fig. 1 (SVD+Zero123). 2) Failing to animate existing 3D assets through multi-
view conditions. With the development of 3D generations, animating existing high-quality 3D content
becomes a common demand. However, previous works about 4D modeling from video [24, 57] or
based on generated 3D assets [5, 29, 38, 66] are all based on text [39, 41] or single-view [31, 40]
conditioned models, struggling to faithfully preserve multi-view attributes during the 4D generation,
such as the back of butterfly in Fig. 1 is ignored by Zero123 [31].

To address these issues, we advocate for an approach better suited for 4D generation, that is, ani-
mating any off-the-shelf 3D models with unified spatiotemporal consistent supervision. In this
way, it would be convenient to directly take advantage of various fast-developing 3D generation and
reconstruction approaches based on a single foundational model, eliminating the accumulation of
errors in modeling appearance and motion.

To this end, we propose a novel 4D generation framework called Animate3D in this paper, which
can be divided into a foundational 4D generation model and a joint 4D Gaussian Splatting (4DGS)
optimization. Formally, the foundational 4D model is a Multi-View Video Diffusion Model (MV-
VDM) built upon the 3D generation model, MVDream [4 1], which can synchronously synthesize
multi-view images with various temporal motions. Specifically, to better inherit the prior in previous
3D and video diffusion models trained on large-scale data, we propose a learnable plug-and-play
spatiotemporal attention module, building upon the motion module in video diffusion [18, 6, 20]
to expand the attention learning from the temporal domain to the spatial and temporal domain.
Moreover, MV-VDM also includes the ability to refer to multi-view images, sufficiently preserving
the identity and details of off-the-shelf 3D assets. Specifically, given multi-view images rendered
from existing 3D assets or collected from real-world objects, we expand adaptive image-to-video
work, 12V-Adapter [17], to multi-view version, called MV2V-Adapter, incorporating multi-view
conditions to 4D learning through additionally spatial features and text embeddings. Enhanced by
the multi-view appearance injection, we can disentangle the appearance learning from the motion
learning, ensuring MV-VDM focuses on learning natural and coherent dynamic motions.

To further enable impressive animations from 3D objects that can be observed at any viewpoint
and time, we jointly optimize the 4DGS [55] through both reconstruction and 4D Score Distillation
Sampling (4D-SDS) losses based on our unified MV-VDM. Benefiting from the spatiotemporal



consistent multi-view video generations, 4DGS can be roughly converged to proper results with
only reconstruction loss, while 4D-SDS further improves the details and fine-grained motions. The
Gaussian trajectory learned by our framework is surprisingly accurate and could be used to directly
animate the mesh.

The main dilemma in building a foundational 4D generation model lies in the rarity of large-scale 4D
datasets, which is non-trivial to collect but the key factor to drive our MV-VDM. In this work, we make
the first attempt to build a large-scale multi-view video (4D) dataset, dubbed MV-Video. Specifically,
MV-Video comprises about 84K animations that are available under a public license, consisting of
about 38K animated 3D objects at all, which are rendered into over 1.3M multi-view videos with
minigpt4-video [3] generated prompts, to serve as the training dataset for our 4D foundation model.

We highlight the contribution of this paper as follows: 1) Animate3D is the first 4D generation
framework to animate any 3D objects with detailed multi-view conditions. The framework is further
extended to achieve mesh animation without skeleton rigging. 2) We propose the foundational
4D generation model, MV-VDM, to jointly model spatiotemporal consistency. 3) We present the
largest 4D datasets MV-Video collected with about 84K animations and over 1.3M multi-view
videos. Extensive experiments demonstrate that our data-driven approach can generate spatiotemporal
consistent 4D objects, significantly outperforming previous counterparts.

2 Related Work

3D Generation. Early 3D generation works optimized single 3D object with CLIP loss [36] or Score
Distillation Sampling (SDS) [33] from 2D text-to-image (T2I) diffusion models. Since the models
providing supervision lacked 3D prior, those works usually suffered from spatial inconsistency, i.e.,
multi-face Janus problem [50, 28, 53]. To tackle this problem, on the one hand, some works [3 1, 40,

, 32, 35] lifted the T2I diffusion to multi-view image diffusion by injecting new spatial attention
layers and fine-tuning on large-scale 3D synthetic datasets [13, 12]. Although 3D consistency was
improved, these optimization-based methods still required a relatively long time to optimize a 3D
object. On the other hand, some feed-forward 3D generation foundation models [22, 61, 47, 67, 54,

, 30], also trained on large-scale 3D datasets, were able to produce a good-quality 3D object in
several seconds in an inference-only way. Inspired by the success of the data-driven approaches in
3D generation, we aim to construct a large-scale 4D generation dataset and take the pioneering step
towards developing foundation models for 4D generation.

Video Generation. Video generation works started with text-to-video (T2V) generation [20, 42, 2,

, 6, 19,7, 10], subsequently followed by image-to-video (I2V) approaches [64, 17, 58, 6]. Previous
T2V works usually built upon T2I diffusion models [20, 42, 19, 18, 21], leveraging their pre-trained
weights by leaving the spatial blocks unchanged and inserting new temporal blocks to model the
temporal camera or object motions. The 12V works [58, 17, 64], building upon the aforementioned
T2V methods, typically incorporate image semantics into video models. This is achieved through
cross-attention mechanisms between noisy frames and the conditional image, while retaining the
motion module design from the T2V models unaltered. We draw inspiration from the development
paradigm of video generation to design our 4D generation foundation model, which is a multi-view
image conditioned multi-view video diffusion model building upon pre-trained multi-view 3D and
video diffusion models.

4D Generation. The pioneering work of 4D generation is MAV3D [43], which is a text and image-
conditioned 4D generation framework. MAV3D first proposed a multi-stage pipeline to optimize
the static 3D object generation through the T2I model and subsequently learn motions from the
T2V model [42]. Following works [68, 5, 29, 69, 4, 59] adopted a similar pipeline, and they further
found that employing T2I [39] and 3D-SDS [4 1] are crucial for both object generation and motion
learning stages. Without them, the quality of the generated object’s appearance suffered a remarkable
decline, and the motion-learning process was prone to failure. Very recently, Consistent4D [24]
proposed a video-to-4D generation task, which used single-view video reconstruction and SDS
from Zero123 [31] for motion and appearance learning. This paradigm was adopted by following
works [38, 63, 60, 57, 16, 11] and extended to text/image-to-video then video-to-4D generation.
All aforementioned works heavily depend on the foundational model for SDS to preserve objects’
appearance and attributes. However, existing 3D diffusion models struggle to refer to multi-view
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Figure 2: Illustration of our proposed multi-view video diffusion model—MV-VDM (upper part)
and our Animate3D framework (lower part). MV-VDM, trained on our presented large-scale 4D
dataset MV-Video, can generate spatiotemporal consistent multi-view videos. Animate3D, based on
MV-VDM, combines reconstruction and 4D-SDS optimization to animate any static 3D models.

conditions, restricting their broader applications to animate various off-the-shelf 3D assets without
losing their multi-view attributes.

Furthermore, it is worth noting that existing 4D generation methods suffer from another issue, i.e.,
spatial and temporal inconsistency [43, 5, 29, 24, 38]. Because the diffusion models used for SDS
were never trained with multi-view video (4D) datasets, missing the critical capacity to formulate
spatial and temporal consistency simultaneously. Thus previous methods failed to properly trade
off a good balance between appearance and motion learning. Please refer to Sec. B in appendix for
detailed discussion and comparison.

In this work, we resort to disentangle 3D object generation/reconstruction and motion learning
through a foundational 4D generation model, and propose a novel framework to animate any static
3D object with consistent multi-view attributes.

3 Method

Given a static 3D model, our goal is to animate it with a text prompt and use its multi-view renderings
as image condition. This 4D generation task is particularly challenging as it requires ensuring
spatial and temporal consistency of the appearance and motion, compatibility with the prompt, and
preserving the identity of the static object. To address these challenges more fundamentally, we
propose a novel framework, Animate3D, to animate any static 3D object. As depicted in Fig. 2,
we divide the task into two parts: learning a multi-view video diffusion model (MV-VDM), and
animating 3D object with multi-view videos generated by MV-VDM.

3.1 Multi-view Video Diffusion Model (MV-VDM)

We propose a novel multi-view image conditioned multi-view video diffusion model, named MV-
VDM. To inherit prior knowledge acquired by spatially consistent 3D models and temporally consis-
tent video models trained on large-scale datasets, we advocate a baseline architecture by integrating
them to utilize their pre-trained weights. In this work, we take MVDream [4 1] and AnimateDiff [ 18]
for the 3D and the video diffusion model, respectively. To enhance the spatiotemporal consistency
and ensure compatibility with the prompts and the object’s multi-view images, we propose an efficient
plug-and-play spatiotemporal attention module combined with an image-conditioning approach. Our



MV-VDM is trained on our presented large-scale multi-view video dataset, MV-Video, which is
introduced in Sec. 4.

Spatiotemporal Attention Module. As illustrated in Fig. 2, we insert a novel spatiotemporal attention
module after cross-attention layers. The proposed spatiotemporal attention module comprises two
parallel branches: the left branch is for spatial attention, and the right branch is for temporal attention.
For spatial attention, we adopt the same architecture as the multi-view 3D attention in MVDream [41].
Specifically, the original 2D self-attention layer is converted into 3D by connecting n different views.
In addition, we incorporate 2D spatial encoding, specifically sinusoidal encoding, into the latent
features to enhance spatial consistency. As for temporal attention, we keep all designs of the temporal
motion module from the video diffusion model [18] unchanged in order to reuse their pre-trained
weights. Based on the features of these two branches, we employ an alpha blender layer with a
learnable weight to achieve features with enhanced spatiotemporal consistency. It is worth noting
that we do not apply spatiotemporal attention across all views and frames due to the prohibitive GPU
memory requirements that render training infeasible. Instead, our parallel-branch design offers an
efficient and practical alternative. Specifically, we first reshape the input feature of spatiotemporal
attention module X € REXnxXF)xexhxw jniq two forms, X; € REXHx(nxhxw)xe g4 spatial branch

and X, € Rbxnxhxw)xfxe for temporal branch. The spatiotemporal attention is then computed as:
Xout = 1 - Attentiongpatial (XiW5, XiWg, XiW3 ) W5 +

1
(1—p)- Attentiontemporal(XTVVé7 X Wi, X, WHWE, )
where ;i denotes the learnable weight, W2/, W;g ‘ ‘s/ ‘ (S)/ * represent the corresponding projec-

tion matrices. b, n, f, h, w, c are the batch size, views, frames, height, width, and channels of the
image features, respectively.

Multi-view Images Conditioning. Inspired by 12V-Adapter [17], we add a new attention layer,
termed MV2V-Adapter, parallel to the existing frozen multi-view 3D self-attention layer within the
proposed spatiotemporal block, as shown in Fig. 2. Concretely, noisy frames are first concatenated
along the spatial dimension. These are then used to query the rich contextual information from
the multi-view conditional frames, which are extracted using the frozen 3D diffusion model. Next,
we add the output of the MV2V-Adapter layer to that of the original multi-view 3D attention layer
of MVDream. Thus, for each frame i € {1,..., f}, denoting the multi-view input, output, and
conditional frames’ features as X ™%, X1t . and X1 we have:

Xout' = Attention(X ™ W, X '™ Wi, X Wy )Wo +
Attention(X "™ Wo', X Wi, X P )W/,

where Wg, Wi, Wy and W are projection matrices in original self-attention layer, while W' and
Wo' are those in the newly added layer. We find this simple cross-attention operator can effectively
improve the object’s appearance consistency in the generated video. After that, as shown in the
spatiotemporal block in Fig. 2, we employ two cross-attention layers to align the text prompt and
preserve the object’s identity, respectively. The left one is inherited from MVDream, while the right
one is pre-trained in IP-Adapter [62].

@

Training Objectives. The training process of our multi-view video diffusion model is similar to

Latent Diffusion Model [39]. Specifically, the sampled multi-view video data qé:"‘l:f are first encoded

into latent feature zé:"’l:f via encoder £ frame by frame and view by view. Then we add noise

using the forward diffusion scheduler: ztl:n’&f = \/o_ztz(l):n’zzf + /1 — aye, where oy is a weighted
parameter and € is Gaussian noise. Note that, following 12V-Adapter, we keep the first frame, i.e., the
condition multi-view frames clean, and only add noise to the rest of the frames. During training, the

proposed MV-VDM takes as input the clean latent code z;™", noisy latent code z; 2 text prompt
embedding ¥, and the camera parameters X", and outputs the noise strength, supervised by L5 loss.
The training objective of our MV-VDM is calculated as:

Lyv-vpuM = Ef(Qo)vy&EN(O,T),t, [le = Ee(zé:n,l’ Z:flm’zzfv Ly, El:n)”%}a (3)
where 6 denotes the diffusion model. It is important that we keep the entire multi-view 3D attention
module frozen and only train the MV2V-Adapter layer and the spatiotemporal attention module to
conserve GPU memory and accelerate training. Moreover, as the multi-view images of the first frame,
zé :"’1, serves as the condition images, we calculate the loss only for the latter f — 1 frames, i.e.,
Zé:n,Q:f )



3.2 Reconstruction and Distillation of 4DGS

Based on our 4D generation foundation model MV-VDM, we propose to animate any off-the-shelf
3D object. For efficiency, we take 3D Gaussian Splatting (3DGS) [25] as the static 3D object
representation, and animate it by learning motion fields represented by Hex-planes, as in [55].

4D Motion Fields. As in 4D Gaussian Splatting (4DGS) [55], we represent the motion fields by
Hex-planes [15, 8]. Denoting the static 3DGS as G = {X,C,a,r, s}, where X, C, a, r, and s
represent the position, color, opacity, rotation, and scale, respectively. The motion module D predicts
changes in position, rotation, and scale for each Gaussian point in frame 7 by interpolating the
Hex-planes R. The motion fields computation can be formulated as:

F= U H interp(RS, (X,1)), @)
I ¢

AX:qbX(f)aAr:¢r(f)aA3:¢s(f)v Q)
where [ equals to the scales in Hex-plane, and interp() denotes interpolating the Gaus-
sian points on the specific plane ( to obtain corresponding motion features. We have ( €
{(z,9), (z,2), (y, 2), (z,t), (y,1), (2,t) }. Therefore, Gaussian G’ at time ¢ is updated as follows:

G ={X+AX,C,a,7 + Ar,s + As}. (6)

To better preserve the appearance of static 3D objects, we keep certain attributes, specifically opacity
« and color C, unchanged.

Coarse Motion Reconstruction. Based on the spatiotemporal consistent multi-view videos generated
by MV-VDM, we first leverage a 4DGS reconstruction stage to directly reconstruct the coarse motions.
Specifically, we use a simple but effective £, loss as our L., which is calculated as:

MfZZWrwz (7

=1 j=1

where C and C denote the multi-view and multi-frame renderings and the corresponding ground
truth. As verified in Fig. 3, this reconstruction stage can already learn high-quality coarse motions by
leveraging the generated multi-view videos of MV-VDM.

4D-SDS Optimization. To better model the fine-level motions, we introduce a 4D-SDS optimization
stage to distill the knowledge of our multi-view video diffusion model. The 4D-SDS loss £4p_sDs
is a variant of zg-reconstruction SDS loss and can be formulated as:
~ ~ Zt — Ot€p
Lip-sps(G. D,z = £(9(D(G)) = Evs lllz = Al5], 20 = =—, ®)
t

where z and zg are latent feature of the rendered image and the estimation of clean latent feature from
current noise prediction €y, respectively, g represents the rendering function. o, and o, are the signal
and noise scale controlled by the noise scheduler, respectively.

Training Objectives. In addition to L. and £4p_sps, we introduce a variant of As-Rigid-As-
Possible (ARAP) loss [46] to facilitate the rigid movement learning as well as the maintenance of the
high-quality appearance of the static object. The ARAP loss L, in our work is defined as:

Larap(p) ZZwMH i) — Ri (0} — ph)II?, ©)

i=2 keN,,

where Rj is estimated from a rigid transformation using Singular Value Decomposition (SVD)
according to [46]:

Rj = argmingcg0(3) Z wj,k||(p§‘ —pi) — Rj((p; — )l (10)
keN,,

N, denotes the set of points within a fixed radius of p;, and w; = exp(f%) where d;, is the
distance between center of p; and py, measuring the impact of p; on p;. This loss encourages the
generated dynamic object to be locally rigid, and it enhances the learning with rigid movement.
In summary, the training objectives for animating off-the-shelf 3DGS object is:

L= )\lﬁrec + )\2‘C4D78DS + )\3£arap7 (11)
where A1, A2, and A3 are weighted parameters.



3.3 Extension to Mesh Animation

To directly utilize high-quality mesh generated from commercial 3D generation tools and crafted by
human experts, we extent our framework to mesh animation, producing animated mesh compatible
with standard 3D rendering pipelines.

We initialize the 3DGS representation of the given object by vertices and triangles of the static mesh.
Specifically, the color is determined by vertex color and we average the connected edges for the scale.
Opacity and rotation are set to fully visible and zero rotation quaternion, respectively. The coarse
3DGS is animated following the motion reconstruction steps as described in the above sections. We
utilize the per-vertex Gaussian trajectory to deform the static mesh in a straightforward way without
skeleton rigging, control point selection or complicated deformation algorithms. As shown in Fig. 6
and our project page, the results are surprisingly good despite the simplicity of the solution.

4 Experiment

4.1 Setup

Training Dataset. To train our MV-VDM, we build a large-scale multi-view video dataset, MV-Video.
Concretely, we render multi-view videos of 37,857 animated 3D models collected from Sketchfab [1].
Each model has 2.2 animations on average, resulting in 83,716 animations in total. Each animation is
2 seconds long at 24 fps. Note that animated models that are not allowed to be used to generate Al
programs are filtered. The statistical information of our MV-Video dataset is reported in Table 1. For
more details about the rendering settings and data examples, please refer to our Appendix ( D). We
will release this dataset to further advance the field of 4D generative research.

Table 1: Statistical information for our multi-view video (MV-Video) dataset.
Model ID | Animations | Avg. Animations per ID | Max Animations per ID | Multi-view Videos
37,857 | 83,716 | 22 \ 6.0 | 1339456

Implementation Details. We sample 8 frames evenly for each animation to train our MV-VDM. We
use the Adawm optimizer with a learning rate of 4e — 4 and a weight decay 0.01, and train the model
for 20 epochs with a batch size of 2048. When inference, we set the sampling step to 25 and adopt
freeinit [56] to get stable results when animating 3D objects. As for 4D generation, the resolution
and feature dimension of the Hex-planes are set to [100, 100, 8] and 16, respectively. We perform
coarse motion reconstruction for the first 1000 iterations with a batch size of 32 (4 views, 8 frames),
and then add 4D-SDS optimization for another 400 iterations. Learning rate is 0.0015 initially and
decreases linearly to 0.0005 at the end of reconstruction stage. Aj, A2 and Az in Eq. 11 are set to
10.0, 0.01 and 0.5, respectively. It costs 3 days to train our MV-VDM on 32 80G A800 GPUs, and
the optimization for 4D generation takes around 30 minutes on a single A800 GPU per object.

Evaluation Dataset. For the evaluation of MV-VDM, we render multi-view images from 128 static
3D objects and then generate multi-view videos conditioned on them. Following the evaluation
setting of VBench [23], we use four different random seeds for each object and report the average
results. For the evaluation of 4D generation, we generate 25 objects across various categories using
the large 3DGS reconstruction model GRM [61]. Input images for GRM and animation prompts used
in this work are provided in our Appendix ( E.1).

Evlaution Metrics. We adopt the evaluation protocol proposed in VBench [23], which is a popular
video generation benchmark consisting of both T2V and 12V evaluation tools. The I2V evaluation
protocol contains 9 evaluation metrics, and we choose 4 for our evaluation, i.e., I2V Subject,
Motion Smoothness, Dynamic Degree, and Aesthetic Quality, measuring the consistency
with the given image, the motion smoothness, the motion degree, and the appearance quality,
respectively. We abbreviate them as 12V, M. Sm., Dy. Deg. and Aest. Q. in the experiment section.
Values of all metrics are the higher, the better, except for Dynamic Degree, since we observe that
sometimes completely failed results present extremely high dynamic degree. For more details about
the introduction and calculation of the evaluation metrics, please refer to our Appendix ( E.2).

Comparison Methods. We compare our work with 4Dfy [5] and DreamGaussian4D (DG4D) [38]
on the task of animating any given 3D object using their official implementations. They represent the
state-of-the-art in 4D generation methods, starting by generating a static 3D object using 3D-SDS in
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the initial stage, and subsequently animating it via video SDS and single-view video reconstruction in
later stages. For 4D representation, 4Dfy and DG4D adopt dynamic NeRF [34, 26] and 4DGS [55],
respectively. For a fair comparison, we replace the dynamic NeRF in 4Dfy with 4DGS used in both
our work and DG4D, and also apply ARAP loss for motion regularization. For DG4D, we keep the
4DGS representation and motion regularizations in their work unchanged.

4.2 Comparison with State-of-the-Art

In this section, we perform comprehensive comparisons with previous works, including quantitative
and qualitative comparisons and user studies.

Table 2: Quantitative comparisons with state-of-the-art methods.

(a) Comparison on video generation metrics. (b) Comparison via user study.
12Vt M.Sm. T Dy. Deg. Aest. Q.1 Align. Text Align. 3D. Mot. Appr.
4Dfy (Gau.) [5] 0.783  0.996 0.0 0.497 4Dfy(Gau.) [5] 2.028 1.608 1.534 1.84
DG4D [38] 0.898  0.986 0.477 0.529 DG4D [38] 2.824 3.52 2.284 3.108
Ours 0.982 0.991 0.597 0.581 Ours 4.386 4734  4.288 4.528

Quantitative Comparison. As shown in Tab. 2a, our method significantly outperforms 4Dfy and
DG4D in terms of 12V, Dy. Deg., and Aest. Q.. This indicates our generation results have good
alignment with the given static 3D object (I2V Subject), dynamic motion (Dynamic Degree),
and superior appearance (Aesthetic Quality). For Motion Smoothness, we slightly lag behind
4Dfy, since 4Dfy always generates nearly static results, as illustrated by the 0.0 Dynamic Degree in
the first row of Tab 2a. Generally, our method is able to animate 3D object with smooth and dynamic
motion, at almost no cost of sacrificing their high-quality appearance, facilitating customized and
high-quality dynamic 3D object creation.

Qualitative Comparison. As shown in Fig. 3, it is obvious that 4Dfy’s results are blurred and deviate
much from the given 3D object, owing to the use of text-conditioned diffusion models to optimize
the motion and appearance. Additionally, its generated objects are almost static. This is because at
the beginning of the training process, the noisy rendered image sequence, i.e., the input to the T2V
model, has no temporal changes, which misleads the video diffusion model to generate almost static
supervisions, as illustrated in Fig 1. For DG4D, its results align well with the given 3D object in front
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Figure 4: Ablation for multi-view video diffusion.
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“Cow in cartoon style lifts its front hooves.”
Figure 5: Ablation for 3D object animation.

view, i.e., the view used for generating guided video. However, it doesn’t align with the object in the
novel view, as indicated by the tail in Bear and Penguin, distorted goggles in bear, and blurred back
and side views in Fig 3. This is because it adopts Zero123 to optimize the novel views. Zero123 only
conditions on the front view, leading to NVS optimization favoring pre-trained data distributions,
which could lead to potential appearance degradation. More importantly, DG4D fails when the object
in the guided video is assigned with movements toward the camera. For example, the frog is moving
forth and back in the guided video, however, DG4D interprets it as enlargement and reduction of the
object. The same thing comes to the penguin which nods towards the camera and leans forward. This
misinterpretation usually results in blurry effect and strange appearance.

In contrast, our method, leveraging the spatiotemporal consistent muti-view prior, manages to deal
with motion towards the camera, as demonstrated by the bear’s raised front paw (our model takes the
front view and its orthogonal views as the condition view, not depicted in the image). Besides, we
successfully maintain the high quality appearance of the given 3D object when generating natural
motion. Please refer to the videos in our supplementary material for a more intuitive comparison.

User Study. We conduct a user study among 20 people on the 25 dynamic objects and report the
averaged results in Tab. 2b. The participants are asked to score the generated dynamic objects from
1 to 5, according to the alignment with the given text (Align. Text) and static object (Align. 3D),
motion quality (Mot.), and appearance quality (Appr.). The user study proves the superiority of our
method. Please refer to the Appendix ( E.3) for more details.

4.3 Ablation
Table 3: Ablation Studies

(a) Ablation of Multi-View Diffusion (b) Ablation of 4D Generation
I12V1 M.Sm. 7T Dy. Deg. Aest. Q.1 I2V 1t M.Sm.T Dy. Deg. Aest. Q.1
w/o S.T. Att. 0915  0.980 0.958 0.531 w/o SDSloss  0.978  0.990 0.657 0.572
w/o Pre-train 0.910  0.981 0.944 0.531 w/o ARAP loss 0.970  0.990 0.573 0.557
Ours 0.935 0.988 0.710 0.532 Ours 0.983  0.997 0.597 0.581

Multi-view Video Diffusion. In Tab 3a, we validate the effectiveness of the proposed SpatioTemporal
Attention (short as S.T. Att.) and the pre-trained weight from video diffusion model (short as Pre-
train). We replace the proposed spatiotemporal block with temporal block from AnimateDiff, and
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“A cute dog is running and jumping.”
Figure 6: Visualizations of mesh animation. We present RGB and textureless renderings of two mesh
animation results. Best viewed by zooming in.

this leads to performance drop in I2V Subject, Motion Smoothness and Aesthetic Quality.
Dynamic Degree seems to be enhanced, but that is caused by the increase of unstable failure
cases. The same tendency could be observed in experiments w/o pre-trained video diffusion weight.
Therefore, we think both designs are necessary for generating multi-view videos consistent with the
given multi-view images and with high-quality appearance and motion. Qualitative ablations in Fig 4
further demonstrate this point.

4D Object Optimization. The ablations for 4D object optimization are shown in Tab. 3b and Fig. 5.
The quantitative results in Tab. 3b indicate both SDS and ARAP losses improve the alignment with
the 3D object (I2V Subject), Motion Smoothness, and Aesthetic Quality. However, the
Dynamic Degree decreases. We suppose the decrease in dynamic degree is mainly caused by the
removal of floaters and blurry effects, which are also taken into account of dynamic degree, as shown
in Fig. 5. The two losses might slightly decrease the motion amplitude, but generally, we think the
overall performance is improved when applying them.

4.4 Mesh Animation

We provide mesh animation results in Fig. 6. Static meshes are generated by commercial 3D
generation tools. For more results, please visit our project page.

5 Conclusion

In this work, we present Animate3D, a novel framework for animating any off-the-self 3D object.
Animate3D disentangles the 4D object generation into a foundational 4D generation model, MV-
VDM, and a joint 4DGS optimization pipeline based on MV-VDM. MV-VDM is the first 4D
foundation model, which can generate spatiotemporal consistent multi-view videos conditioned on
multi-view renderings of a static 3D object. To train MV-VDM, we present the largest multi-view
video (4D) dataset, MV-Video, containing about 84K animations with over 1.3M multi-view videos.
Based on MV-VDM, we propose an effective pipeline to animate any static 3D object by jointly
optimizing the 4DGS via both reconstruction and 4D-SDS. Animate3D is a highly practical solution
for downstream 4D applications since it can animate any generated or reconstructed 3D objects. Data,
codes, and pre-trained weights will be released to facilitate the research in 4D generation.
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Figure 7: Qualitative comparison with state-of-the-art methods on reconstructed 3D objects.

A More Visualizations

We provide more qualitative results as below. Please refer to the videos attached in our supplementary
materials for more intuitive visualizations.

Comparison. In the main paper, we only present the animation results for 3D objects generated
by large reconstruction models. But our method is able to animate reconstructed objects as well as
generate 3D models from text/image/video, and shows a great advantage over other methods as shown
in Fig. 7. In Fig. 7, 4Dfy produces results inconsistent with the given 3D object, and they are almost
static. Distortions and blurry effects could be observed in results generated by DreamGaussian4D,
and it sometimes deviates from the given object in novel views. In contrast, our approach can generate
results not only spatially and temporally coherent but also consistent with the input object.

Ablation. We provide more qualitative ablations of MV-VDM and 4D generation in Fig. 8.

B Discussion with respect to Previous 4D Generation Methods

Previous two-stage 4D generation works attempted to disentangle motion learning from appearance
learning by adopting different types of supervision signal, i.e., video diffusion/monocular video for
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Figure 8: Ablations of MV-VDM and 4D optimization.



motion and image/3D diffusion for appearance. However, the motion and appearance supervisions
adopted in their work are not orthogonal, and sometimes have negative effect on each other.

For example, it is commonly agreed that video-diffusion-SDS usually brings unappealing visual effect
to the appearance of the object [68, 69, 29]. Meanwhile, the appearance supervision signal prevents
4D object from updating along the direction that follows the exact score function of the video diffusion
model, leading to less natural motion. Small motion amplitude in [5, 69] and shaky appearance
in [29] could partly support this point. As for monocular-video-guided motion learning, previous
work [38, 63, 66] rely on 3D diffusion model (Zero123 [31]) to supervise both motion and appearance
in novel view. Since Zero123-SDS is applied per-frame, temporal consistency in novel view cannot
be guaranteed. Moreover, monocular video doesn’t provides information about depth/distance, so
moving closer to or farther away from the camera can be perceived as the magnification or reduction
of the object, resulting in appearance distortion.

In contrast, our method takes the unified supervision signal from MV-VDM for motion learning and
appearance preservation. Our motion and appearance supervision signal inherently don’t conflict
with each other, since MV-VDM is conditioned on multi-view attributes of the 3D object to generate
multi-view videos. Besides, multi-view motion supervision in our work enables more natural motion
generation when compared with single-view motion supervision in other works. Thus, we achieve
superior performance in terms of both motion generation and appearance preservation in the task of
animating any off-the-shelf 3D object.

To provide a comprehensive understanding of the difference between our method and previous work,
we conduct comparisons with more open-sourced previous works using their official implementations,
and summarize the results in Tab. 4.

Table 4: Comparison on 4D Generation. Note that TC4D [4] takes pre-defined object trajectory as
the input.

| 2V M.Sm.tT Dy.Deg. Aest. Q.7 CLIP-I1

4Dfy [5] 4DGS) | 0.783 0.996 0.0 0.497 0.786
4Dfy [5] (NeRF) 0.817 0.990 0.010 0.549 0.834
Animate124 [68] | 0.845 0.986 0.313 0.563 0.845
4DGen [63] 0.833 0.994 0.187 0.453 0.776
TC4D [4] 0.856 0.992 0.830 0.565 0.859
Dream-in-4D [69] | 0.938 0.994 0.0 0.551 0.895
DG4D [38] 0.898 0.986 0.477 0.529 0.860
Ours (8-frame) 0.982 0.991 0.597 0.581 0.946
Ours (16-frame) 0.983 0.991 0.750 0.572 0.937

C Limitations

Despite the promising performance in generating spatiotemporal consistent 4D objects, our method
still has a few limitations. First, it takes a relatively long time (about 30 minutes) to animate an
existing 3D object. Second, there is a trade-off between temporal coherence and motion amplitude in
the multi-view videos generated from the proposed MV-VDM. Specifically, the larger the motion
amplitude, the higher the risk of temporal incoherence. Third, our model sometimes fails to animate
realistic scenes due to the domain gap between synthetic training data and real-world test data. At last,
current evaluation metrics in 4D generation are not sufficient, as they mainly rely on video generation
metrics and user studies. Designing more suitable metrics for 4D generation will be an important
future work.

D More Details of MV-Video Dataset

D.1 Rendering Details.
For the rendering settings, we first centralize the model according to the bounding box of the object in

the first frame. Then, we adjust the camera distance to make sure the object stays in the scope of view
during the animation process. Sixteen views are evenly sampled in terms of azimuth, starting from
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values randomly selected between —11.25° and 11.25°. The elevation angle is randomly sampled
within the range of 0° to 30°. To stabilize training, we manually filter out objects that we identify as
challenging to learn due to factors such as large movements, complex environmental interactions,
high speed, or sudden changes in appearance.

D.2 Data Examples.

As shown in Fig. 12 and Fig. 13, we showcase more examples of our multi-view video dataset
(MV-Video).

Furthermore, as shown in Fig. 9, we extracted all nouns from the text captions of our MV-Video
dataset, which are generated by minigpt4-video [3], and plotted a word cloud of the Top-1000 nouns.
We can see that our MV-Video dataset contains diverse categories of animated 3D objects, including
humans, characters, animals, plants, mechanical structures, and ect..
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Figure 9: Illustration of the word cloud of the top 1000 nouns extracted from the text captions of our
MV-Video dataset.

E 4D Generation Evaluation

E.1 Evaluation Dataset

In Fig. 10, we provide the input images for image-to-3D generation and corresponding text prompts
for 4D animation used in Sec. 4.2.

E.2 Evaluation Metrics

VBench [23] provides six evaluation metrics for I2V evaluation®, i.e., I2V Sub ject, I2V
Background, Camera Motion, Subject Consistency, Background Consistency, Motion
Smoothness, Dynamic Degree, Aesthetic Quality and Imaging Quality. Since our gener-
ated results have no background, and the evaluation cameras are fixed, metrics related to background
and camera motion are not used. The metric Imaging Quality, which is affected by ambient light,
is also not used here. Subject Consistency is also omitted since its calculation process is similar
to I2V Subject, except for the choice of reference frame. It takes the first generated frame, instead
of the input image used in I2V Subject, as the reference frame for similarity score calculation,
which is not suitable for our task of animating 3D objects. We briefly introduce the evaluation metrics
used in our work as below:

3https ://github.com/Vchitect/VBench/tree/master/vbench2_beta_i2v
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glinting katana. hands to cast a spell.

Figure 10: Illustration of the input images for image-to-3D generation and corresponding prompts for
4D animation.

I2V Subject assess whether the appearance of the object in the generated video remains consistent
with that in the input image. To this end, DINO [9] feature similarity across frames is calculated.

Motion Smoothness evaluates whether the motion in the generated video is smooth, and follows
the physical law of the real world. The motion prior in the video frame interpolation model [27] is
utilized for evaluation.

Dynamic Degree employs RAFT [48] to estimate the degree of dynamics in synthesized videos.

Aesthetic Quality is calculated by the LAION aesthetic predictor, which reflects the artistic and
beauty value perceived by humans towards each frame.

E.3 User Study Template

As illustrated in Fig. 11, a picture of the user study page is depicted. The survey contains 25 dynamic
objects, which are shown in Fig. 10. The participants are asked to score the generated 4D objects
from 1 to 5, according to the alignment with the given static object and text prompt, appearance
quality, and motion quality.
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Every three constitute a group, representing the animation generations for the same object u
sing three different methods (the order has been shuffled). Please compare the generated res
ults within the same group and then provide scores.

1. Please rate the animated results for the static 3D model in conjunction with the video. (The first row fea
tures reference images of the 3D model, while the second row displays the generated animation results.
The first and second columns represent two different viewpoints, respectively.)

The desired text description for the animation is: "Sheep in cartoon style, with reading glasses, reads
a book.”

Score: 1 2 3 4 5

Consistency with the static 3D model: O O O O O
Consistency with the text prompt: O O O O O
Aesthetic quality of the results: OONONONO)
Movement quality of the results: O O O O O

Gif

Figure 11: The layout of our user study.

F Border Impacts

This paper exploited 4D generation based on our proposed multi-view video diffusion model, which
can generate spatiotemporal consistent multi-view videos. Because of the advanced generative
capacity, our models may output misinformation or fake videos. Thus, we sincerely remind the users
to pay attention to it. Note that our method only focuses on the technical aspect. All the code, dataset,
and trained models will be released.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: our abstract clearly clarifies our contributions: 1) We propose Animate3D, the
first 4D generation pipeline to animate any 3D objects. 2) We propose the first 4D generation
foundation model, MV-VDM. 3) We present the largest 4D datasets, MV-Video.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we have included our limitation in Sec. C.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper did not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: our experiments are reproducible, and all codes, dataset, and pre-trained
models will be open-released.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All data, codes, and pre-trained weights used in our experiments will be
open-released.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we include detailed implementations in Sec. 4.1. The full details can be seen
in our codes, which will be open-released.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: As a visual generative model, we provide sufficient visualization results
instead.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: we provide the information on the computer resources in Sec. 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: our work conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: we provide the it in Sec. F.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: we have cited related works and codes.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: the paper does not release new assets for now. Codes, datasets, and trained
models will be open-released soon.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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